NCC - (b

J 7]

Object-Oriented

Requirements Analysis
A Quick Tour

-y TE — AT
(MATA-L2-137 1) ‘_;"—‘JFL.T-'M-\ILNT*F-Q) N9
LR UMLNTE ARALYSTHE A TUTLX TUtis)
(Mouston Unive) 7T p cscL 09 el e

Edward V. Berard

$:P=C

Software Engineering Professional Education Center

University of Houston-Clear Lake
2700 Bay Area Bivd., Box 258
Houston, Texas 77058

(713) 282-2223

|OOSE r 3=
Object-Oriented Approaches to

Software Development

Of all the approaches to software development,
an object-oriented approach appears to be both
the most beneficial and the most popular.

Prolegus == ' =
©Berard Sotware Enginesring, inc., 1960

=
What Are Objects?

Objects are the physical and conceptual things we find in
the world around us. An object may be hardware,
software, a concept (e.g., velocity), or even “flesh and
blood.” Objects are complete entities, e.g., they are not
“simply information,” or “simply information and
actions.” (Software objects strive to capture as completely
as possible the characteristics of the “real world” objects
which they represent.) Finally, objects are “black boxes,”
i.e., their internal implementations are hidden from the
outside, and all interactions with an object take place via a
well-defined interface.

DefiniSens [-—2a
©B8erard Sofware Engineering, inc., 1980

©Berard Software Engineering, Inc., 1990

3=

=

Different Kinds of Objects

O An instance is a specific thing or characteristic.

O A class is an object which is used to create instances,
i.e., a class is a template, description, pattern, or
“blueprint” for a category or collection of very similar
items. Among other things, a class describes the
interface these items present to the outside world.

O A valueis the unambiguously defined state (or partial
state) of something. A value is an instance of a class,
or a collection of instances of (possibly dissimilar)
classes.

Protogus — 3 =

OBerard Sofware Enginesring, ina., 1990

=

“Truth In Advertising”

While the intention is to keep things simple, there are
some things you should know:

¢ In object-oriented development in the large
(OODIL), we will encounter objects which are not
single instances or single classes.

¢/ Not all “object-oriented” approaches are
class-based.

v Correctly identifying objects is not the most
important part of object-oriented software
engineering.

OBermd Bohware Engnesrng, inc., 1980

©Berard Software Engineering, Inc., 1990

333D

ENNENE]

T
» Objects Encapsulate RENN]
==== O Knowledge of state =====
nEaN T
] O Operations (and their corresponding {REES=
ENAEN methods) HERE]
NEERN NN
=§=== O [Inthe case of composite objects] =====
T other objects]
BEEERR O (Oponaly) excep gaee
‘.'S}ﬂ. [Optionally] exceptions =+
manmmal O [Optionally] constants ====
T MmN
iiigii [Most importantly] concepts -+
EEREEN T
NEEENN NENES K i
ey Otewrs Somwars Engooemng, vo. 1300 SEBEIEIEINNE ™or Sl i)
S0 ase conr coof 108 2001 20N 200E 2008 006 205 SO0 300 3008 0. ... o e o 2e o 3 L 2 i 3 1 1 X 1 1. 1]

Localization

Localization is the process of placing items in
close physical proximity to each other, usually
with the connotation of having some mechanism
for precisely defining the boundaries of the
“area” into which the items have been gathered.

@Berard Sofwars Engineering, ne., 1990

©Berard Software Engineering, Inc., 1990

3=\

' =
Different Approaches Mean
Different Localizations

O Functional decomposition approaches
localize information around functions.

O Data-driven approaches localize information
around data.

3 Object-oriented approaches localize
information around objects.

CBaresd Sofware Engineering, inc., 1980

=
What Kinds of Items Will Be Largely
Inappropriate For Object-Oriented

Software Engineering

O Data flow diagrams

O Entity relationship diagrams
O Relational databases

O Structure charts

O Data dictionaries

CBerard Sohware Enginesring, Ine., 1980

©Berard Software Engineering, Inc., 1990

==

IOOSE r 3=\
Object-Oriented Software

Engineering

Q

Identifying relevant objects
O Documenting these objects

O Applying configuration management to the
objects of interest

(3 Producing both static and dynamic
object-oriented models of the system.

©Berwd Solware Enginesring, inc., 1990

=
What We Will Find Out About
Object-Oriented Software Engineering

O Object-oriented software engineering involves more
than just identifying objects of interest.

O Object-oriented development in the large (OODIL) is
different from small object-oriented development.

O Object-oriented development of real-time systems
brings in its own set of issues.

3 Object-oriented software engineering can be quite
systematic, and quite formal (i.e., mathematical).

. ~a 10,
" v ©Berard Sotware Engnesrng, Inc., 1990

©Berard Software Engineering, Inc., 1990

3=\

=0

A Word To The Wise

OBerard Sofware Enginaering, inc., 1980

Impact Statement

O Object-oriented thinking will
impact everything — from the
choice of programming
languages to management
practices.

3=

©Berard Software Engineering, Inc., 1990

OOSE 3=\
Motivation for an
Object-Oriented Approach

O Motivation for Object-Oriented Approaches
in General

(3 Motivation for an Overall Object-Oriented
Approach to Software Engineering

©8erwrd Sotware Engineerng, inc., 1990

=
Motivation for an Object-Oriented
Approach In General

a

Obiject-Oriented Approaches Encourage Modem Software
Engineering.

Object-Oriented Approaches Promote Software Reusability.
Object-Oriented Approaches Facilitate Interoperability.

Object-Oriented Approaches Closely Resemble the Original
Problem.

Object-Oriented Software Is Easily Modified, Extended, and
Maintained.
General Electric Report

Q Qaag

Q

List of Mot [N
©Berard Sohware Engineering, ina., 1980

©Berard Software Engineering, Inc., 1989

=33

OOSE =0

Object-Oriented Approaches Encourage
Modern Software Engineering

O OOAs require data abstraction
O OOAs require information hiding

O OOAs require localization above the
subprogram level

(0 OOAs naturally support concurrency

OBsrard Solware Enginesring, ina., 1980

=

OOAs Promote Software

Reusability
[Brown and Quanrud, 1988] [Ratcliffe, 1987]
[St. Dennis et al, 1986] [Schmucker, 1986b])
[Russell, 1987] [Cox, 1986]
" [Booch, 1987] [Tracz, 1987]
{Ledbetter and Cox, 1985] [Embly and Woodfield, 1987]
[Chan, 1987] {Margono and Berard, 1987]
-ty " -t

SBwwé Sohwere Engnearing, ing., 1900

©Berard Software Engineering, Inc., 1989

=D

[oose r 3=R30
OOAs Promote Interoperability

Consider a computer network with different computer
hardware and software at each node. Next, instead of
viewing each node as a monolithic entity, consider each
node to be a collection of (hardware and software)
resources. Interoperability is the degree to which an
application running on one node in the network can make
use of a (hardware or software) resource at a different
node on the same network.

eperabiiity P
©Berwd Solwars Enginesring, Inc., 1960

=

Interoperability Examples

Consider a network with a CRAY supercomputer at one
node rapidly processing a simulation application, and
needing to display the results using a high-resolution color
monitor. If the software running on the CRAY makes use
of a color monitor on a Macintosh Ilci at a different node,
that is an example of interoperability. Another example
would be if the Macintosh Ilci made use of a relational
DBMS which was resident on a DEC VAX elsewhere on
the network.

Intnreperabiity Motvatten =% o
©Berard Sohwars Enginesring, inc.. 1980

©Berard Software Engineering, Inc., 1989

3=\

=

Polymorphism

In the context of object-oriented languages, association
of generic names with behaviors is called overloading of
operator names or polymorphism. ... The advantage of this
encapsulation is that the programmer need keep track of
the names of only a (relatively) few behaviors that are
exhibited by a set of objects; the names of the larger set of
procedures that implement the behaviors need not be
remembered ... [I]t is sufficient for a programmer to know
the name of an abstract behavior to invoke it.

—Smith, Barth and Young in [Shriver and Wegner, 1987]

eperabiity " -7 -
©Berard Sohware Enginesing, Inc., 1990

=

An Example of Polymorphism

Consider the Apple Macintosh. On the screen (desktop) of
a Macintosh, there might be several icons, one
representing a document, one representing an application,
and another representing an uninstalled desk accessory.
Sending the same message (for example “duplicate™) to
each of these objects will cause each to behave in the same
general manner (for example, each will make a copy of

itself).

O8ecard SoRwere Enginesring, Ina, 1900

©Berard Software Engineering, Inc., 1989

3=3%D

=
A Better Definition of
Polymorphism

Polymorphism is a measure of the degree of
difference in how each item in a specified
collection of items must be treated at a given
level of abstraction. Polymorphism is increased
when any unnecessary differences, at any level
of abstraction, within a collection of items are
eliminated.

eperahittty » -_—t
OBerwrd Solware Enginesring, inc., 1980

- IFJ=RD
OOAs Facilitate

Interoperability

Rather than attempting to localize based on
functionality, but instead localizing on objects
facilitates interoperability. This is because
viewing the system components in
object-oriented terms encourages software
engineers to describe the same general object
behavior using the same names. (The X
Windows System, for example, is very
object-oriented.)

opessbitily - -10,
©8ermd Sofware Enginesring, In., 1990

©Berard Software Engineering, Inc., 1989

3=\

=
Object-Oriented Solutions Closely
Resemble the Original Problem

The “real world” may be considered to be highly
object-oriented. All entities (e.g., cars, people,
and computers) may be viewed as being
composed of highly independent objects
(interchangeable parts). A solution which
duplicates this arrangement in software will
resemble the original problem.

Close fio

©Berard Sofware Enginesring, inc., 1990

=
OOAs Promote Software Solutions Which
| Are Easily Modified

The concept of interchangeable parts not only
helped spur the Industrial Revolution, but is an
object-oriented concept which facilitates
modification and extension of modern electronic
equipment. The same concept has been applied
with success to software systems, e.g., the Apple
Macintosh and the X Windows System.

Sasy MediSestion [-l2,
Slerard Sohware Engnesring, Inc., 1090

©Berard Software Engineering, Inc., 1989

=23

| OOSE F IO

The General Electric Report

Deborah Boehm-Davis and Lyle Ross conducted a study for
General Electric comparing several development approaches for
Ada software (i.e., Structured Analysis/Structured Design,
Object-Oriented Design, and Jackson System Development). They
found that the object-oriented solutions, when compared to the
other solutions:

v’ were simpler (using McCabe’s and Halstead’s metrics)
were smaller (using lines of code as a metric)
appeared to be better suited to real-time applications
took less time to develop

SN

©Berard Solware Engineering, Inc., 1990

=

The Impact of Object-Orientation on
Software Engineering Processes

Originally, people thought of “object-orientation” only

in terms of programming languages. Discussions were

chiefly limited to “object-oriented programming”

(OOP). However, people quickly found that:

¢ object-oriented programming alone was
insufficient for large and/or critical problems, and

¢ object-oriented thinking was largely incompatible
with traditional (e.g., functional decomposition)
approaches.

rpast -4,

@Berard Sofware Enginesring, inc.. 19080

©Berard Software Engineering, Inc., 1989

3=\

=
The Progression of
Object-Oriented Technology

O Object-Oriented Programming (1966, 1970)

O Object-Oriented Design (1980)

O Object-Oriented Computer Hardware (1980)

O Object-Oriented Databases (1985)

O Object-Oriented Requirements Analysis (1986)
O Object-Oriented Domain Analysis (1988)

©Berwrd Solware Enginesring, inc., 1000

=
Lessons Learned From Early
Projects With OOD

3 Auempting to use object-oriented design with functional
requirements is difficult.

O Localization around functions tends to split high level system
objects and increases integration time; whereas an object-oriented
front end would identify system objects and maximize the
advantage of an object-oriented approach.

3 The benefits of object-oriented approaches are magnified the earlier
in the life-cycle one begins thinking in terms of objects.

SBerard Sohware Enginesring, ine., 1980

©Berard Software Engineering, Inc., 1989

333D

OOSE =XV

Changing Our Thinking On
Methodologies

In the 1970s and early 1980s, many people believed that
the various “life-cycle phases” (e.g., analysis, design, and
coding) were largely independent. Therefore, one
supposedly could use very different approaches for each
phase with only relatively minor consequences. For
example, one could consider using structured analysis with
OOD. This line of thinking, however, was found to be
largely inaccurate.

»

CBerwd Sohwwe Engineering, inc., 1980

=
Motivation For An Overall
Object-Oriented Approach to
Software Engineering

O Traceability

O Reduction of Integration Problems

O Improved Conceptual Integrity

O Objectification and Deobjectification

Metivation for COSE M
©SBerard Sowe e Engnesring, Inc., 1990

©Berard Software Engineering, Inc., 1989

3=

Requirements

Traceability

Functional

Localize Localize
information around information around
functions objects

OBerard Sofware Engnesring, ine., 1990

Transformation of
Requirements
Object-

Oriented
Requirements

Olerard Sohware Enginesring, ine., 1900

©Berard Software Engineering, Inc., 1989

3=

OOSE 3=\

Reduction of Integration
Problems

Often, different functional areas of a large
project are implemented by different teams of
software engineers. If an object is common to
several functional areas, but has different
attributes in each area, it is likely that each team
will implement the same object in a different
manner. The serious consequences of this will
not become known until the integration phase.

" Metvalien — 21 .

©Bermd Sofwars Enginesring, Inc., 1990

v

=0

Different Views of The Same Object

Specification for Altributes: A, B,
Functional Area A |+ \and D of Object X
Specification for L - M
Functional Functional Area B[~ 00 f bnicory
Specifications
for the Specification for
. Whole System Functional Area C Auributes: C, D,
and E of Object X
Specification for
Functional Area D

Attribute A of Object
X; Atutribute N of
Object Y

©Berad Sohware Engnesring, inc., 1990

©Berard Software Engineering, Inc., 1989

3ERARD

=
Facilitation of the Introduction of Other
Object-Oriented Techniques

Interviews of those who have used object-oriented
design on large projects shows that two points are
mentioned most frequently:

v/ attempting to use object-oriented design with
functional requirements is difficult, and

v’ the benefits of object-oriented approaches are
magnified the earlier in the life-cycle one begins
thinking in terms of objects.

ntedustion of 0O -—23.
Teshriquee €Berard Sowme Enginesring, ne., 1990

=

Improved Conceptual Integrity

0 Conceptual integrity might be defined as
“being true to a concept,” or more simply as
“being consistent.”

.3 The more consistent the approach used in the
development of software, typically the more
reliable, more maintainable, and more usable
the software becomes.

©8erard Sohware Enginesring. ine.. 1960

©Berard Software Engineering, Inc., 1989

3=333D

| OOSE F =0

Consistent Solutions

O It has been observed that an object-oriented approach
to software development seems to yield results which
are superior to those yielded from a functional
decomposition approach. Unfortunately, at present, it
is all too common to functionally decompose a system
at a high level and then attempt to apply an
object-oriented approach to the components.

O This approach is hardly consistent.

©lBerard Sotware Enginesring, inc., 1960

=
Objectification and
Deobjectification

Object-oriented approaches and systems localize information
around objects. Whenever an object-oriented system must interface
with a non-object-oriented (or weakly-object-oriented) system,
transformations are usually required:

v’ Deobjectification is a process whereby an object is decomposed
into components which can be understood by the
non-object-oriented system.

v Objectification is the process of reconstructing an object from
more primitive components. The usual connotation is that these
components were supplied by a non- (or weakly-)
object-oriented system.

©Bermd Sofwars Engineering, Ine., 1000

©Berard Software Engineering, inc., 1989

3=\

=
Examples of When Objectification and
Deobjectification Are Necessary

Probably the two most common examples of objectification and
deobjectification are:

v When an object-oriented application requires persistent objects
and attempts to store objects in a relational database. To store
objects, the objects must first be deobjectified. To retrieve the
objects, the objects must be reconstituted (objectified) from the
information stored in the relational database.

v/ In a distributed application, it will be necessary to transmit
objects over the communication links between the nodes. Since
few, if any, communications systems are object-oriented,
objects will have to be decomposed (deobjectified) before
transmission and reconstituted (objectified) upon receipt.

- 27,

©Bward Sotware Enginesring, Inc., 1990

=
Minimizing the Need For
Objectification and
Deobjectification

Since objectification and deobjectification have
a negative impact on reliability and efficiency,
we wish to avoid them when possible. An
overall object-oriented approach to software
engineering helps us to minimize the need for
these processes.

Minimizing Nesd . -it,
@Berard Sohware Enginesring, ine., 1980

©Berard Software Engineering, Inc., 1989

3=

I OORA r =0

Analysis Versus Design

Problems With Requirements

Analysis Tells “What” — Not “How"”

Design Tells “How"

Defining the Border Between Analysis and Design

The Traditional Meaning of Analysis

Design Tends to be Programming Language Specific
User Visibility

Management Decision Points

Concept of Scope

QQaa

SSNSxx

Concept of Viewpoint
O Truth In Advertising
Vo Dssign 1.

©Berard Sofware Enginesring, Inc., 1908

OORA =N

Analysis Vs. Design (continueq)

O Sources of Confusion

O Types of Requirements

Teples Ve Ossign 2.
CBeward Sohware Enginesring, Inc., 1980

3=D

©Berard Software Engineering, Inc., 1989

3=

Problems With Requirements

To gain a better understanding of what is
required in analysis, we must first understand
that software engineers are seldom presented
with a “clean” set of requirements. Often,
software engineers will have to improve upon, or
create, the initial set of “requirements.”

Analysis Yo Duesign 3 o

©8erwrd Solwwe Enginesring, ing., 1988

==
Be Suspicious of the Quality of
Any Existing Requirements

Existing requirements usually have one or more of the following
problems:

omissions

contradictions

ambiguities

duplications

inaccuracies

too much design

irrelevant information

LU N U U U U

- Quallty Anclysis Vo. Dasign 4 .
@Berard Solware Engnesring, ina., 1988

©Berard Software Engineering, Inc., 1989

3=

OORA I=N0

Omissions

O Very often the initial set of user-supplied
requirements (and information) is
incomplete. This means that, during the
course of analysis, the software engineer will
have to either locate, or generate, new
information. This new information is, of
course, subject to the approval of the client.

3 Note that this location or generation of new
information may be considered by some to be
“design.”

L Qualty yels V. Ousign 3 o
OBerwd Sofware Enginesring, inc., 1988

=~

Contradictions

O Contradictions may be the result of
incomplete information, imprecise
specification methods, a misunderstanding,
or lack of a consistency check on the
requirements.

3 If the user alone cannot resolve the
contradictions, the software engineer will be
required to propose a resolution to each
problem.

Pog Cualty Anciysle Ya. Dusign ¢ .
©Berard Sowars Enginesring, inc., 1989

©Berard Software Engineering, Inc., 1989

3=\

OORA ’ 3=

Ambiguities

O Ambiguities are often the result of
incompletely defined requirements, lack of
precision in the specification method, or a
conscious decision to leave their resolution to
the software engineers performing analysis.

(J Resolution of ambiguities may require some
“ requirements design” decisions on the part
of the software engineers.

Qually vele Va Design 7
@Berard Soware Enginesring, Inc., 1008

V0

Duplications

O Duplications may be the outright replication
of information in the same format, or the
replication of the same information in several
different places and formats. Sometimes
duplications are not obvious, e.g., the use of
several different terms to describe the same
item.

3 Software engineers must be careful when
identifying and removing duplications.

Cuality yois Ve. Dusign &
m«wmu.vn

©Berard Software Engineering, Inc., 1989

32D

Inaccuracies

O Itis not uncommon for software engineers to
uncover information which they suspect is
incorrect. These inaccuracies must be
brought to the client’s attention, and
resolved.

O Often, it is not until the client is confronted
with a precisely-described proposed solution
that many of the inaccuracies in the original
requirements come to light.

Pow: Quallty yois Vo. Design ¢ .
©CBerwrd Sotware Enginesring, inc., 1080

==

Too Much Design

One of the greatest temptations in software
engineering is “to do the next guy’s job,” i.e., to
both define a problem and to propose a
(detailed) solution. One of the most difficult
activities during analysis is the separation of
“real requirements” from arbitrary (and
unnecessary) design decisions made by those
supplying the requirements.

Quallty Ansiysis Vs. Dusign 10,
©Burard Sohware Engnesring, ine., 1980

©Berard Software Engineering, Inc., 1989

3=

OORA =N

Metarequirements

A “metarequirement” is a stipulation of how a
particular system behavior is to be accomplished
which is both supplied and required by the
client. For example, a client might require that
data be encrypted using a specific algorithm.
Metarequirements are design decisions made by
the client. However, they should be kept to a
minimum.

o Anaiyeis Ve. Dusign *1 .
Oferwd Solware Enginearng, inc., 1 989

OORA =N

Failure To Identify Priorities

3 A software engineer must have some basis
for making decisions. Without a
clearly-defined, well thought out, and
comprehensive set of priorities, it will be
difficult to select from a number of
alternatives.

3 Software engineers must realize that
emphasis on one priority often inversely
impacts several others.

- Quedy va Design 12,
Slerard Solware Engnesring, Ins., 1 860

©Berard Software Engineering, Inc., 1989

3=337D

Irrelevant Information

Software engineers are often reluctant to throw
away any information. Their clients often feel it
is better to supply too much information rather
than too little. Without some clear cut
mechanisms to identify and remove irrelevant
information, it will be difficult to develop
accurate, cost-effective, and pragmatic solutions
to a client’s problems.

Quallty A Ve Casign 13,
©Berwd Sofware Engineering, Inc., 1960

OORA I=INO

Analysis Tells “What” — Not
“How”

It is the job of analysis to describe what is
needed, not how it is to be accomplished.
Software engineers must be aware that there is a
‘very strong tendency to describe how while
failing to accurately describe what needs to be
done.

What, Net How A Va. Ossign 14,
SBerad Sohware Enginearing, Ing., 1980

©Berard Software Engineering, Inc., 1989

=RV

Examples of “What”

The system must recognize valid Ada source code.

If a node on the network “goes down,” the network will
dynamically re-configure itself.

When the power is tumned on the system will conduct a self test, i.e.,
a power on self test or “post.”

Users will be able to add items to the database, delete items from
the database, and be able to determine how many items are currently
in the database.

The product will handle up to 1000 transformations every 10
milliseconds.

All calculations must be accurate to 10 significant digits.

What, Net New yels Vo Duastgn 15,

OBerard Solwars Enginesring, ine., 1980

OORA =N

Examples of “How”

An old item may be exchanged for a new item by first deleting the
old item, and then adding the new item.

Trigonometric functions will be evaluated using infinite series
approximation.
Incoming data will be sampled 200 times a second with a statistical

analysis done to remove any “system noise,” thus assuring the user
of “clean data.”

To place a text window on the screen, the user must first create a
workstation, then create the text window, and finally, add the text
window to the desktop.

What, Net Hew yois Vo, Dusign 18,

SBurwe Sohware Engnesng, he., 1980

©Berard Software Engineering, inc., 1989

=230

OORA 3=

Design Relates To “How”

Once the client’s requirements have been
established, it is the software engineer’s job to
design a system which will meet these
requirements. It is during design that a software
engineer must describe the details of how the
behavior of the system is to be accomplished —
within the constraints stipulated by the client.

What, Net Hew yels Vo. Design 17,
©Berwd Solware Enginesring, Inc., 1980

OORA =D

“What” Vs. “How” Is
Insufficient

While saying that analysis should address
“what,” and not “how” is accurate, it does not
provide any detailed guidance to the analyst. We
must better define the differences between
analysis and design. Further, it is also desirable
to define the types of products one expects from
analysis.

Berdur Sotwnen Analysie and 1
Deaign yola Vo. Dusign .

©Berard Sofwvare Enginesring, Inc., 1980

©Berard Software Engineering, Inc., 1989

=30

OORA =TI

The Border Between Analysis
and Design

3 The Traditional Meaning of Analysis
O User Visibility
O Design Tends to Be Programming Language Specific

O Management Decision Points
3 Concept of Scope
O Concept of Viewpoint

OORA 2N
The Dictionary Meaning of

Analysis

O The separation of a thing into the parts or
elements of which it is composed

3 The examination of a thing to determine its
parts or elements; also a statement showing
the results of such an examination

— Merriam-Webster Dictionary

Berder B Anabysie and
Dueign ©Berard Sohware Engineering, ine., 1988

dysis Va. Design 30 .

©Berard Software Engineering, inc., 1989

3=\

OORA 3N

The Traditional Meaning of
Analysis

In technical endeavors, we expect the following things from an
analysis effort:

v’ an examination of a concept, system, or phenomenon with the
intention of accurately understanding and describing that
concept, system, or phenomenon,

¢ an assessment of the interaction of the concept, system, or
phenomenon with its existing or proposed environment,

v’ proposal of two to three alternative solutions for the client with
an accurate and complete analysis of the alternatives, and

¢ an accurate and complete description of the solution to be
delivered to the client.

yois snd yels Ve. Onsign 21,
©CBearrd Solwmre Enginesring, inc., 1980

fi

The Traditional Border
Between Analysis and Design

An examination of virtually all software
requirements analysis methodologies shows that
requirements analysis ends with the description
of the “user interface.” “User” may be taken to
mean anything from a human user, to other
software, to computer hardware.

Rerder Sutwmen Analysie and yols V. Design 22,
Desion ©OBeraré Sofware Enginesring, Inc., 1988

©Berard Software Engineering, Inc., 1989

3=33D

OORA E=
Jesign Tends To Be Programming
Language Specific

3O In truth, requirements analysis for software
applications is somewhat influenced by the choice of
programming language. However, most approaches to
requirements analysis strive to be independent of
programming language considerations.

O Most of the suggested approaches to software design,
on the other hand, deal with programming language
concepts (e.g., modules, packages, and software
interfaces) directly.

Language Spaeifie Va Dasign 23,
©Berard Sohware Enginesring, Inc., 1988

30
User Visibility

3 “User visibility” is a term used to describe
the level of client involvement during the
software life-cycle. User visibility is highest
during the “analysis” and “use” phases. User
visibility is lowest during the “design” and
“coding’ phases.

3 Once the client has accepted the solution
described by the analyst, the solution is then
turned over to the designers.

Berder o yeie ané Anciysie Va. Dosign 24 .
Design ©Berwrd Sohwwe Engnesring, ine., 1989

©Berard Software Engineering, Inc., 1989

3=337D

[oora F ' =D

Confidence In the Solution

Both the client and the software analyst must be
comfortable with the solution proposed by the
analyst. Each must have a high degree of
confidence that the resulting system will perform
as expected. Further, the designers should have
both an accurate description of what they must
deliver, and a means of judging the merits of
each design alternative they may consider.

Berder Sotween Analysis and yein Va Dasign 25 .
. ©Berard Solware Engineering, inc., 1080

=~

Goals for the Analyst

O The requirements analyst must describe
“what the system must do,” and avoid the
details of “how the system will accomplish
its objectives.” The analyst must also reduce
the need for the user to be “visible” during
design.

O Therefore, the analyst must describe the
system precisely enough to accomplish these
goals.

~d Va Design 26,
CBerwrd Sofware Engnesring. ine.. 1989

i

©Berard Software Engineering, Inc., 1989

3=3%D

OORA =0

Management Decision Points

O The end of each phase (or partial phase) of the
software life-cycle is a decision point. Management
must often make decisions on how to proceed, or
whether to proceed. Without a system specified in
sufficient detail, meaningful decisions are often
difficult, if not impossible.

O The requirements analyst must propose a solution in
sufficient detail to allow meaningful management
decisions.

and A Ve Dssign 27,
CBerard Sohware Enginesring, ina., 1908

i

=
The Concept of Scope

In conducting any form of analysis, a software
engineer must define the boundaries of the
system being analyzed, i.e., the scope of the
system. There are two generally recognized
levels of scope, and, depending on how the
software engineer attacks the problem, he or she

may deal with only one level.
::.—-m“ OBerwrd Sohware Engineering, ine., 1980 oo Ve sslen 28

3D

©Berard Software Engineering, Inc., 1989

Two Levels of Scope

There are two instances where there will be
two levels of scope:

v/ When the analysis must include a model of
an existing process which is to be
automated.

¢/ When the analysis includes items other
than software, e.g., hardware and users.

Serder Botwuen Ansiyeie and yolo Vo Ousign 29,
Ossign ©8erwd Sohware Enginesring, inc., 1989

-~

Beginning With Two Levels of
Scope

In either of the two previously mentioned
situations, the software engineer will start with
an overall system model, and later focus on the
actual software system. The first scope level will
include non-software items. The second level
will include only the software.

Berdar Batwosn Anslysls and yeis Ve Dusign 30,
' ©Berard Solware Engresring, inc., 1 089

3=333D

©Berard Software Engineering, Inc., 1989

One Level of Scope

Sometimes, the software engineer will choose to
focus solely on the software system during the
analysis. In this case, only one level of scope is
defined, i.e., the boundary of the software with
the rest of the overall system.

Berder Butwooen Andlysle and Anaiyela Va. Dasign 31 .
Desion @8erwd Sofwwe Engineering, inc., 1989
3=

The Concept of Viewpoint

Very often during analysis, software engineers
almost automatically pick the viewpoint of a
user of the system. Sometimes this results in an
awkward analysis and design. Shifting one’s
viewpoint can result in a simplification of the
analysis.

Berder Sutwesn Andysie iné o Va. Oustgn 32.
Dasign OBerare Solwars Engrearng, inc., 1908

©Berard Software Engineering, Inc., 1989

3=33%D

Truth In Advertising

O The concepts of “life-cycle phases,” e.g., analysis,
design, and testing, are artificial concepts introduced
primarily by management to provide some level of
monitoring and control over a software engineering
project.

O As we will see later, the object-oriented life-cycle is
different. Specifically, it is a recursive/parallel
life-cycle, which means that analysis will be
performed at many different points, rather than “all at
once.”

OORA s Diftarant Ansiysis Va Dasign 33,
CBerard Sofware Engineering, inc., 1940

=
Sources of Confusion

The following items seem to confuse software
engineers:

¢/ Some items are mentioned (described) in analysis,
but do not become part of the design, i.e., they are
unique to the analysis.

¢ Some items are created in design, i.e., they were
not even mentioned during analysis.

v All that is not expressly forbidden is allowed.
¢ All that is not expressly allowed is forbidden.

fi

©Berard Sohware Enginesring, iInc., 1908

and ysls Va. Dasign 34 .

©Berard Software Engineering, Inc., 1989

=D

=D

Types of Requirements

There are three major types of requirements:
¢/ User Driven
¢/ User Reviewed
v/ User Independent

o Typos Ve Onsign 35.
©Berard Solwars Enginesring, inc., 1980

Ioopu . N0

User-Driven Requirements

3 User-driven requirements are requirements
which are defined and specified entirely by
the client. The software engineers
responsible for developing a solution which

- meets the user-driven requirements have
little, or no, input to the definition and
specification of the system requirements.

(3 This is not a desirable situation.

Typos yele Va. Design 38 .
Slerrd Solware Enginesring, ine., 1080

©Berard Software Engineering, Inc., 1989

333D

I OORA I IS0

User-Reviewed Requirements

User-reviewed requirements are requirements which are
specified by the client and software engineers working
together. It is not the software engineers’ job to be an
expert in the client’s application domain. It is, however,
required that software engineers possess the skills,
methods, techniques, and tools which will enable them to
effectively define and specify requirements through
interactions with the client.

Reg Trpes Ye Design 37,
©Berard SoRware Enginesting, inc., 1088

-~

User-Independent
Requirements

User-independent requirements are those
requirements which must be defined and
specified without a particular user being present.
The most common example of user-independent
requirements are those requirements which are
defined by software product vendors when they
choose to develop a new software product.

Trpes yels Ve. Design 38,
@Berard Sohwere Enginesring, Inc., t 908

©Berard Software Engineering, inc., 1989

=A%

3=

The Overall OORA Process

Q

Understanding What Comes Before OORA

Understanding the Mechanisms By Which the Process May Be
Accomplished

Identifying Sources of Requirements Information

Qa

Characterizing the Sources of Requirements Information
Identification of Candidate Objects

Building Object-Oriented Models of Both the Problem and Potential
Solutions, As Necessary

Qoaan

Oberard Sohwwe Engnesring, Inc., 1988

Owverall OORA Proeses . !.

OORA IEIND

The Overall OORA Process

{Continued)

3 Re-Localization of Information Around the Appropriate Candidate
Objects

O Selection, Creation, and Verification of OCSs, Subsystem
Specifications, and Systems of Objects Specifications

O Assigning OCSs, Subsystems, and Systems of Objects to the
Appropriate Section of the OORS

O Development and Refinement of the Qualifications Section

O Development and Refinement of the Precise and Concise System
Description

Ovarall CORA Teplss Oversll OORA Preesss o 2.

ferard Bohware Enginesring, ine., 1980

©Berard Software Engineering, Inc., 1989

3=\

I OORA F IS0

Domain Analysis Comes
Before OORA

Hopefully, an organization has conducted some form
of object-oriented domain analysis. This analysis
must:

¢ Identify reusable objects within the appropriate
application domain(s)

¢ Document these objects

v/ Place these objects into some form of reusability
system

Sefere OORA Owrall CORA Mro0se® e 3.
©Berard Sotware Engineering, inc., 1960

=
Feasibility Studies May Be
Conducted Before OORA

3 One, or more, feasibility studies may be
accomplished before OORA for a given
project. Feasibility studies often use the
techniques of analysis and design, although
usually on a much more informal basis.

3 There are several types of feasibility, e.g.,
financial, technical, time-related, and
marketing.

Selers CORA Owerell OORA Pressss — 4 .
©Clerwd Sotwwe Engineering, inc., 1980

©Berard Software Engineering, inc., 1989

3=

OORA SN0

Understanding the Mechanisms by
Which the OORA Process May be
Accomplished

O People Think Differently

O Each Project Is Different

O OORA Is an Iterative Process

a

m)

Some Processes May Be Accomplished Concurrently

The OORA Effort May Be Accomplished At More Than One Point
In the Life-Cycle

3O The OORA Effort May Be Driven By External Circumstances
3O OORA Should Not Be Driven By Low-Level Issues

3 Verification, Validation, and Software Quality Assurance Are
Always Important

OCORA Mechané Overall OORA Procest wem 3o

©Berawd Sotwars Engineering, Inc., 1988

OORA IJN0

People Think Differently

3 Itis unusual for two different people to approach the
same task in an identical manner — at least on a
microscopic level. It is quite normal for individuals to
impose their own problem-solving techniques within a
specified approach to a life-cycle process.

3O For example, some people may be quite happy to
identify objects first, and worry about how they will
be used to solve the clients problem later. Others must
have an understanding of the overall problem before
they can even begin to work.

OORA Ms Oversll CORA Preeses o 6.
Slerard Solware Engnesring, ine., 1088

©Berard Software Engineering, Inc., 1989

3=

2 =
Each Project Is Different

There are many things which affect how OORA,
or any analysis process, is accomplished. These
factors tend to change with each project. For
example, a sequential approach may work for a
small project, whereas a highly concurrent and
iterative approach to OORA may be better suited
to a large project.

OORA idpchani

Overall OORA Precess o’ =

©Bewrard Sohware Engnesring, Inc., 1900

OORA =0

OORA Is an lterative Process

At a particular level of abstraction, for a
particular system of objects, or for a particular
subsystem the OORA analyst may make several
passes through the process, to introduce changes
and/or successively refine the analysis. The
larger the project, the greater will be the
tendency to make several passes (i.e., iterate).

OORA Maech

Overall CORA Preeses o § o
©Berard Sotware Enginesring, ina., 1988

©Berard Software Engineering, Inc., 1989

3=\

OORA = =0

Some Processes May Be
Accomplished Concurrently

Although some may attempt to portray OORA as
strictly sequential, there are often parts of the
process which may be accomplished in parallel.
For example, one may simultaneously be
identifying objects of interest, and building an
object-oriented model of either the problem or a
proposed solution.

OCONA Mo Oversll CORA Preases wm ® o
0Berard Sohware Enginearing, ina., 1988

Ioom F I=INO
OORA May Be Accomplished At More
Than One Place In the Life-Cycle

The object-oriented life-cycle is a
“recursive/parallel” life-cycle. This means that,
rather than all the analysis being completed up
front (as in a waterfall life-cycle), analysis may
be distributed throughout the life-cycle (i.e.,
“analyze a little, design a little, implement a
little, and test a little). What is important is that
we perform the analysis which is appropriate to
the view of the system at hand.

OCORA Mesh Overall OORA Presses o= 10,

Oferard Solware Enginesring, Inc., 1980

©Berard Software Engineering, Inc., 1989

3=\

I OORA r =N

OORA May Be Driven By External
Circumstances

The OORA process may be impacted by
such things as:

the availability of information
the introduction of changes
the availability of staff and other resources

AN N NI N

an increasingly better understanding of the
problem

Ovarsll OORA Process w. 11,

g

©8erard Sofware Enginesring, inc., 1980

-
OORA Should Not Be Driven

By Low-Level Issues

Except for true metarequirements, OORA
decisions should not be driven by low-level
issues, e.g., how a concept might be
implemented in a given programming language.

OORA Ms Overall OORA Presses . '2,
OBerard Sohware Engreerng, inc., 1980

©Berard Software Engineering, Inc., 1989

3=

OORA =0

Commission Vs. Omission

The two primary life-cycle “sins” are commission and
omission. Commission implies that we specify too much
detail too soon. Omission implies that we leave out critical
information. These two “sins” must be constantly
balanced. If we supply too much detail at one point we
will restrict our choices at a later point. If we do not supply
enough information at one point, we may have people
making inappropriate and incorrect decisions at a later

point.

OORA Me Ovarall CORA Prossss o '3,
QBerard Solware Enginsering, inc., 1960

IO

Verification, Validation, And
SQA Are Always Important

O Verification answers the question: “are we solving the
problem correctly?” Validation answers the question:
“are we solving the correct problem?”

O Software quality assurance ensures that we are
addressing some aspect of the software life-cycle in an
appropriate and approved manner.

O These processes will be done continually throughout
the OORA process.

CORA M Ovarall OORA Pressss . 14,

obererd Sohware Enginesring, ins., 1980

©Berard Software Engineering, Inc., 1989

3=

‘The OORA Process

Identify the Sources of Requirements Information.
Characterize the Sources of Requirements Information.
Identify Candidate Objects.

Build Object-Oriented Models of Both the Problem and Potential
Solutions, As Necessary.

Re-Localize the Information Around the Appropriate Candidate
Objects.

3 Select, Create, and Verify OCSs, Subsystem Specifications, and
Systems of Objects Specifications.

Qaaag

Q

O Assign OCSs, Subsystem Specifications, and Systems of Objects
Specifications to the Appropriate Section of the OORS.

O Develop and Refine the Qualifications Section,
O Develop and Refine the Precise and Concise System Description.

OORA Precess Owerall OORA Precase
©Berad Sotwwre Engineering, Inc., 1980

IS

-5,

-~

Identifying Sources of
Requirements Information

Very seldom are requirements for a given project contained in a
single, self-contained document. The OORA analyst must identify
all valid, worthwhile sources of requirements information. These
sources can include, for example:

v Pre-existing requirements documents

v Standards documentation

v Knowledgable people

¢ Previously existing software, including prototypes
v Descriptions of “real world” systems of objects

ldenBiying Owvursll CORA Prosses
OBerard Sofware Enginesring, inc., 1080

- 18,

©Berard Software Engineering, Inc., 1989

3EARD

3=1D

Characterizing Sources of
Requirements Information

When characterizing sources of requirements
information, we are interested in two things:

¢ The characteristics of the source itself

¢/ The characteristics of the information
which the source can provide

Ch wrizing Oversll CORA Preatet wa 7.
0Berwrd Sofware Engineering, no., 1989

OORA =MD

Characteristics of the Source

The following are important considerations when attempting to
characterize the source of requirements information:

The credibility of the source

The ease of access the OORA analyst will have to the source
The level of authority associated with the source

The types of information which this source can provide

The responsiveness of the source

The longevity of the source

LRSS

ch [Overallt OORA Presses .« 18.
Clarwd Solware Enginesring, Ine., 19080

©Berard Software Engineering, Inc., 1989

323330

I OORA .; =0

Characteristics of the Information
Provided by the Source

The following are important considerations when attempting to
characterize the information provided by a source of requirements
information:

¢’ The form of the information provided, e.g., textual, graphical,
verbal, executable, and machine-readable

The completeness of the information provided by the source

Identifying which specific aspects of the requirements are
covered by the information

Determining how current the provided information is
Determining the volatility of the information

SR <

oh * Owerall OORA Precess
CBwud Solware Engnesrng, inc., 1088

I OORA ' =0

Characteristics of the Information
Provided by the Source (continueq)

The relevance of the information

How the information can be verified

The availability of the information

The understandability of the information

The importance and priority of the information

The interrelationships among the pieces of information, e.g.,
how will a change in one piece of information impact another
piece of information

AN U N N N N

-) L Overall CORA Precess
OBerwd Sohwwe Enginvesring, Inc., 1968

-— 20,

©Berard Software Engineering, Inc., 1989

3=\

OORA IS0

Identification of Candidate Objects,
Classes, Systems of Objects, and

Subsystems

Even before one has a fairly complete set of
requirements information, one can begin to
identify candidate objects. However, the OORA
analyst should be reluctant to finalize the
definition of any object-oriented item until there
is a high degree of confidence that all the
relevant information relating to that item has
been identified.

1deniifying lame Oversll OORA Precses = 2' .

©erard Solwars Enginesring, inc., 1909

Short Maps

In the process of identifying candidate object-oriented
items, the OORA analyst should keep a record of where a
particular piece of information was found. The collection
of these records for all the object-oriented items is referred
to as a “short map.” The form of a short map is very
similar to an index, i.e., the name of each object-oriented
item is listed (typically in alphabetical order), followed by
pointers indicating where information on the item can be
found.

Idonttying lams Overall OORA Proesss o 32 .

©herwd Sohware Enginesring, Inc., 1080

©Berard Software Engineering, Inc., 1989

3=

[oora 3 E=2 ta)
Building Object-Oriented Models of the
Problem and Proposed Solutions

Some analysts find it useful to build object-oriented
models of parts of the problem and/or solution prior to
identifying all of the object-oriented items which comprise
the system. The form of these models may be textual,
graphical (e.g., Petri net graphs), or a mixture of both.
These models may be used later in the construction of the
applications-specific section of the object-oriented
requirements specification.

Buliding Medale Owverall OORA Precese o 23,
©Berard Sofware Enginesring, inc, 1980

I OORA I 3=

Relocalizing Information Around the
Object-Oriented Items

This step requires that we gather everything we know
about a particular object, class, system of objects, or
subsystem, and place all this information in one place. In
the case of a class, instance, or (some) system of objects,
we refer to the relocalized information as a potential “OCS
precursor.” Exactly how we will treat subsystems requires
further analysis.

el Overall CORA Presses . 24,

©Berard Sohware Enginesring, ina., 1989

©Berard Software Engineering, Inc., 1989

=R\

=0

Each Object Must Be
Associated With a Class

O If we have identified any instances or systems of
objects, each of these must be associated with a
specific class. In fact, we will often use this
information to better define the class.

(3 Although we typically only define OCSs for classes, if
a language allows us to define instances without first
defining a class, and there is no compelling reason to
define a class for the instance we may occasionally
create an OCS for an instance or system of objects.

Re-l Overall CORA Preeses . 23,
OBerard Sohware Enginesring, inc., 1388

Defining Subsystems

O A subsystem is a collection of program units which
exports an object-oriented capability, e.g., windows,
menus, switches, and panels. A subsystem may be
built around a single class, or it may involve many
different, but highly-related classes. There need not be
a direct or indirect connection between any two
components in the same subsystem.

0 Subsystems are to classes as classes are to, say,
operations.

Rel Overall CORA Proeses o 26,
Slerard Sohware Engnesring, ina., 1988

©Berard Software Engineering, inc., 1989

333D

’ 3TN0
The Selection, Creation, and Verification

of OCSs and Subsystems
At this point in the OORA process, after examining
the OCS precursors and tentative subsystem
descriptions, the OORA analyst should have enough
information to:

¢ Select a previously-defined instance or class
(which has been documented with an OCS) to use
for a particular instance or class which has been
documented in the form of an OCS precursor

¢/ Use the information available from a particular
OCS precursor to define a new instance or class,
and document that instance or class with an OCS

OCSe and Sy Overall OORA Preesed owa 27,
CBermd Solware Engineering. inc., 1988

=

The Selection, Creation, and
Verification of OCSs and
Subsystems (continuea)

v/ Use the information available from a particular
tentative subsystem description to select a
previously-defined subsystem

v’ Use the information available from a particular
tentative subsystem to create a new subsystem, or
to extend a currently-existing subsystem

OCBe and S Overall OORA Pressse . 20,
OBerard Sonware Enginesring, Inc., 1980

©Berard Software Engineering, Inc., 1989

3=37D

OORA =N

What About Objects and Other
Application-Specific Information

At this same point, the OORA analyst will also
have information regarding some of the objects
which are instances of the defined classes, and
other application-specific information. This
information is not to be lost or discarded. Rather,
it is to be placed in the appropriate sections of
the application-specific section of the OORS.

OCSe and B Oversll CORA Preasts o 29 .
©Berwrd Sofware Engineering, ine., 1989

OORA I=N0

All Information Must Be
Verified and Quality Assured

Each of the classes, instances, systems of
objects, and subsystems should be explicitly
verified and quality assured. The same should be
done for the application-specific information
associated with these items.

OBerard Solware Enginesring, ine., 1900

©Berard Software Engineering, Inc., 1989

3=\

OORA ISV

Placing Items In the Appropriate Section
of the OORS

O Each OCS, subsystem specification, and system of
objects specification must be assigned to the proper
section (object-general or application-specific) of the
OORS. The OORA analyst should take care to make
sure that the items are properly organized.

O If the OORA analyst has not already done so, any
application-specific information should be placed into
the proper subsection of the application-specific

section.
oOns Oversll CORA Preeses o 3.
©Burwrd Sofwars Enginesring. inc., 1980
F=T)

Development of the
Qualifications Section

The creation, verification, and quality assurance
of the qualifications subsection of the
application-specific section of the OORS usually
continues throughout the OORA process.
Further, it is not until the precise and concise
system description is finalized that we can
finalize the qualifications section.

T Oversll OORA Precses w32 ,

©Berwd Sohware Engreenng, inc., 1908

©Berard Software Engineering, Inc., 1989

3=33A3D

OORA

IS0

Development of the Precise

and Concise System
Description

Like the qualifications section, the precise and
concise system description is often addressed
throughout the OORA process. Once we are
comfortable with our system description (i.e., it
is complete, verified, and quality assured), we
can verify and quality assure the entire OORS.

rcs0 Overall CORA Prossss . 33,
©Berard Sohware Enginesring, ine., 1988
WD
Crignat Shont Map ocs
Roquiremanis -
e | e} | . Procursons |
—— Yxza ————
oons]
== OORA
OCS Jame _tas
= - M
= ap
OCB ower_4
1. Applnsion Unigne J
o -]
——t =~ %A]
1 ‘
Design Code Testing
| —— —— =
Oversll CORA Proeses o 3 .

©Berard Software Engineering, Inc., 1989

3=3%D

Object and Class Specification
Class: Lamp

1.0 Precise and Concise Description

1. A lamp is the abstraction of a simple lamp that can either be turned on
(iluminated) or turned off (extinguished).

Lamp

2. Instances of this class require two operations, i.e., one which will allow a
given lamp to communicate to the “outside world” that it has been “turned
on,” and one which will allow a given lamp to communicate to the “outside
world” that it has been “turned off.”

3. The suffered operations for a lamp are: turn the lamp on, turn the lamp off,
Assign (the state of one lamp to another), and Is_On (is a given instance of
this class in the “on” state). Since a lamp stays either on or off until
instructed to change its state, the states of a lamp are persistent.

4 The lamp class will export no constants or exceptions.

2.0 Graphical Representations
2.1 Static Representations

2.1.1 Semantic Networks

Py

=1 Is_On = Boolean

has_attribute

Lamp

2.1.2 Notes on the Semantic Networks

1. Two different instances of this class are equal if they are both in (or, are
both not in) the “on” state.
©Berard Software Engineering, Inc., 1989 (10/29/90) Lamp —
18620 Mateney Road, Germantown, MD 20874 3: ?\?)

(301) 353-9652 1

5.2 Exceptions

1. The exception Lamp_Not_Found will be raised if there is a request to turn a
specific lamp on, and there is no lamp in the panel which corresponds to the
specific lamp referred to in the request.

©Berard Software Engineering, Inc., 1989 (10/29/90) Floor Arrival -
18620 Mateney Road, Germantown, MD 20874 Panel 3:?\?)
(301) 353-9652 4

7. The exception Lamp_Not_Found is associated with a floor arrival panel.
2.0 Graphical Representations
2.1 Static Representations
2.1.1 Semantic Networks

Floor Arrival Panel

2.1.2 Notes on the Semantic Networks

1. From the outside view, there is no discernable structure or attributes for a
floor arrival panel.

2. Though it seems obvious that the floor arrival panel deals with lamps, these
objects can neither be detected or affected directly from the “outside”. It is
for that reason that these objects do not appear on the semantic net.

2.2 Dynamic Representations
2.2.1 State Transition Diagrams

2.2.1.1 State Transition Dlagrams for Non-Spontaneous State Changes

Turn OnLamp M

Floor Arrival Panel
With Only Lamp M
Tumed On

Floor Arrival Panel
With Only Lamp N
Turned On

Turn On
Lamp M

Turn On
LampN

Turn On Lamp N

2.2.1.1.1 Notes on State Transition Diagrams for Non-Spontaneous State
Changes

1. The states shown in the diagram cannot be interrogated. Specifically, there
are no operations provided that will allow a client of the abstraction to
determine if a particular floor arrival panel lamp is on or off.

2. A client may not interact directly with a specific floor arrival panel lamp.
Clients deliver a request to turn a particular floor arrival panel lamp on or off
via the Turn_On_Lamp operation. It is the computer circuitry in the floor
arrival panel which will actually turn a lamp on or off, or leave a lamp in its
particular state.

3. Since a given lamp will only be turned on or off based on a specific request,
a floor arrival panel with any given lamp lit, and all others not lit, represents

a persistent state.
©Berard Software Engineering, Inc., 1989 (10/29/90) Floor Arrival -
18620 Mateney Road, Germantown, MD 20874 Panel 3: ?\QD

(301) 353-9652 2,

4. Assign: This constructor operation copies the state of one floor arrival panel
object to another instance of the same class. Since the Assign operation
produces an exact copy of an existing floor arrival panel, the resulting copy
may be in any one of the states shown in the STD. The Petri Net Graph
representation of the Assign operation is:

Floor Arrival
Panel Ain

Floor Arrival
Panel Ain

State A(1) State A(1)

Floor Arrival
Panel B in
State A(1)

Floor Arrival
Panel B in
State B(1)

Assign the state of Floor Arrival
Panel A to Floor Arrival Panel B

3.0 Operations
3.1 Required Operations
1. There are no required operations for this class.
3.2 Suffered Operations
Operation Method

¢ Turn_On_Lamp * Turns on the lamp corresponding to the
given destination. If the lamp is already
on, then there is no effect. This
operation also turns off any other lamp
which may be lit.

* Assign + The state of one instance of this class to
another instance of the same class.

4.0 State Information

1. The state for a floor arrival panel may be defined as which a single lamp
(indicating a particular destination (floor)) is on, i.e., all other lamps must,
by definition, be off. (Obviously, you cannot be at two different
destinations simultaneously.) Note that there is no way for the client of the
floor arrival panel to interrogate this state.

5.0 Constants and Exeeptloné

5.1 Constants
1. This class will not provide any constants.
©Berard Software Engineering, Inc., 1989 (10/29/90) Floor Amival -
18620 Mateney Road, Germantown, MD 20874 Panel 3: ?\?)
(301) 353-9652 3

/ -
;
2

Object and Class Specification

Class: Floor_Arrival Panel

1.0 Precise and Concise Description

1. Conceptually, a floor arrival panel is a panel containing a number of lamps
(typically one lamp for each destination (floor)). The floor arrival panel also
contains some computer processing capability. This computer processing
capability allows the floor arrival panel to turn a particular lamp on, based
on a request, and to automatically ensure that all other lamps are off.

Lamp Indicating a Particular
Destination

2. At any one time, only one lamp in the floor arrival panel may be lit (i.e.,
on). A given lamp in the floor arrival panel becomes lit (i.e., is turned on)
based on an invocation of the Turn_On_Lamp operation. Once a lamp
becomes lit, it stays lit until the floor arrival panel receives a request to turn
another lamp on. Once a particular lamp is lit, any additional requests for the
lamp to be lit are ignored. No facility is provided to determine the state of
individual lamps contained in the floor arrival panel.

3. Obviously, any request to turn a given lamp on must contain some way of
uniquely identifying the specific lamp. If the lamp identified in the request is
not contained in the floor arrival panel, the exception Lamp_Not_Found will
be raised.

4. The suffered operation for the floor arrival panel is “Turn_On_Lamp” (for a
given destination).

5. Users of the Floor_Arrival_Panel class must also supply:

. a class with discrete scalar values which will be used to uniquely
identify destinations, i.e., Destination_ID, and

. a value of this class which will represent the largest permissible
value for a destination which can be specified by floor arrival panels
which are instances of the Floor_Arrival_Panel class. Valid
destinations will be represented by all values of the class
Destination_ID from the smallest value up to, and including, the
specified largest permissible value for a destination.

6. The state for a floor arrival panel may be defined as which particular lamp is
on.
©Berard Software Engineering, Inc., 1989 (10/29/90) Floor Arrival —
18620 Mateney Road, Germantown, MD 20874 Panel — Q\?D

(301) 353-9652 1

Note that there is no way for the client of the destination panel to interrogate
these states. Note further, that only one button in a given destination panel
may be pressed at one time. If an attempt is made to press two, or more,
destination buttons simultaneously, and at least of the destination buttons
has a corresponding lamp which is not lit, the destination panel computer
circuitry will select a single destination which will be transmitted via the
“Signal” operation.

5.0 Constants and Exceptions
5.1 Constants
1. This class will not provide any constants.
5.2 Exceptions
1. The exception Lamp_Not_Found will be raised if a “lamp on/off request” is
received and there is no lamp in the panel which corresponds to the specific
lamp referred to in the request.
©Berard Software Engineering, Inc., 1989 (10/29/90) Destination Panel —
18620 Mateney Road, Germantown, MD 20874 3: ?\?D

(301) 353-9652

6
/-

3. Pressing a destination button whose corresponding lamp is already lit will
have no effect.

4. If an attempt is made to simultaneously press two, or more, destination
buttons will result in the following:

. All pressings of destination buttons whose corresponding lamps are
already lit, will be ignored.

. If two, or more, destination buttons, whose corresponding lamps
are not lit, are pressed simultaneously, one of the destinations will
be picked in a non-deterministic way, and notification of a request
for that destination alone will be sent via the “Signal” operation.

3.0 Operations
3.1 Required Operations

Operation Method

» Signal * Alerts the destination panel’s client that
a button corresponding to a specific
destination has been pressed.

3.2 Suffered Operations

Operation Method

* Tum_On_Lamp * Tums on the lamp corresponding to the
given destination. If the lamp is already
on, then there is no effect.

* Turn_Off_Lamp * Turns off the lamp corresponding to the
given destination. If the lamp is already
off, then there is no effect.

* Assign » The state of one instance of this class to
another instance of this class.

4.0 State Information
1. The state for a destination panel may be defined as:

. the sum of the states of the lamps (i.e., on or off) which are
associated with destinations (these states are persistent), and

. whether a destination button, whose corresponding lamp is not lit,
has been pressed (this state is not persistent).

©Berard Software Engineering, Inc., 1989 (10/29/90) Destination Panel =
18620 Mateney Road, Germantown, MD 20874 3: ?*?)

(301) 353-9652 5

3. Since a given lamp will only be turned on or off based on a specific request,
a destinatian panel with any given number of lamps lit and not lit represents
a persistent state.

4. Assign: This constructor operation copies the state of one destination panel
object to another instance of the same class. Since the Assign operation
produces an exact copy of an existing destination panel, the resulting copy
may be in any one of the states shown in the STD. The Petri Net Graph
representation of the Assign operation is:

Destination Destination
Panel Ain Panel A in
State A(1) / State A(1)
Destination \ Destination
Panel B in Panel B in
State B(1) State A(1)
Assign the state of Destination
Panel A to Destination Panel B
2.2.1.2 State Transition Diagrams for Spontaneous State Changes
Press Button N
__ Destination
Destination Panel .
With Button N Not Panel With
Pressed and Lamp Button N
or Button N Not Lit Pressed
\
221.21 Notes on State Transition Diagrams for Spontaneous State
Changes

1. Clients of the destination panel cannot “press” any of the destination panel
buttons.

2. After a button is pressed, the destination panel immediately returns to the
state where that button is not pressed, i.c., a destination panel with any
given button pressed is a highly non-persistent state.

2. Clients of the destination panel are notified that a particular destination panel
button has been pressed via the “Signal” operation. It is the computer
circuitry in the destination panel which will actually provide the notification
that a particular destination button has been pressed.

©Berard Software Engineering, Inc., 1989 (10/2980) Destination Panel —
18620 Mateney Road, Germantown, MD 20874 3: Q\?D

(301) 353-9652

4

A9

2.0 Graphical Representations
2.1 Static Representations
2.1.1 Semantic Networks

Destination Panel

2.1.2 Notes on the Semantic Network

1. From the outside view, there is no discernable structure or attributes for a
destination panel.
2. Though it seems obvious that the destination panel deals with buttons and

lamps, these objects can neither be detected or affected directly from the
“outside”. It is for that reason that these objects do not appear on the
semantic net.

2.2 Dynamic Representations

2.2.1 State Transition Diagrams

2.2.1.1 State Transition Diagrams for Non-Spontaneous State Changes

Turn Lamp N Oft

Destination
Panel With
Lamp N Turned
Off

Destination
Panel With
Lamp N Turned
On

Turn
Lamp N
Off

Turn
Lamp N
On

Turn Lamp N On

22111 Notes on State Transition Diagrams for Non-Spontaneous State
Changes

1. The states shown in the diagram cannot be interrogated. Specifically, there
are no operations provided that will allow a client of the abstraction to
determine if a particular destination panel lamp is on or off.

2. A client may not interact directly with a specific destination panel lamp.
Clients deliver a request to turn a particular destination panel lamp on or off
to the “lamp on/off request port.” It is the computer circuitry in the
destination panel which will actually turn a lamp on or off, or leave a lamp
in its particular state.

©Berard Software Engineering, Inc., 1989 (10/29/90) Destination Panel -
18620 Mateney Road, Germantown, MD 20874 3: ?\?D
(301) 353-9652 3

1367 My Road. Gemaniow MD208TH 3=\

(301) 353-9652

10.

11.

The destination panel must notify the outside world that a particular
destination button has been pressed. It does this through a required
operation, Signal. Each destination button is associated with a specific
lamp, and the panel has the (internal) capability of determining which of its
lamps are lit. If someone presses a destination button for which the
associated lamp that is already lit, no (new) notification is passed to the
outside world. No facility is provided to determine the state of individual
buttons contained in the destination panel.

Obviously, any notification (to the outside world) that a specific destination
button has been pressed (i.e., done through the “Signal” operation) must
contain some way of uniquely identifying the specific desired destination.

Since, to all who must deal with the destination panel abstraction, the
destination panel appears to be changing its state spontaneously (i.e.,
specific destinations will be periodically requested), the destination panel is
an “object with life.”

The required operation for the destination panel is: “Signal” (the user of a
destination panel that a button has been pressed).

The suffered operations for the destination panel are “Turn_On_Lamp” (for
a given destination), “Turn_Off_Lamp” (for a given destination), and
Assign (the state of one destination panel to another destination panel).

Users of the Destination_Panel class must also supply:

. a class with discrete scalar values which will be used to uniquely
identify destinations, i.e., Destination_ID, and

. a value of this class which will represent the largest permissible
value for a destination which can be specified by destination panels
which are instances of the Destination_Panel class. Valid
destinations will be represented by all values of the class
Destination_ID from the smallest value up to, and including, the
specified largest permissible value for a destination.

The state for a destination panel may be defined as:

. the sum of the states of the lamps (i.e., on or off) which are
associated with destinations (these states are persistent), and

. whether a destination button, whose corresponding lamp is not lit,
has been pressed (these states are not persistent).

The exception Lamp_Not_Found is associated with a destination panel.

2

Object and Class Specification

Class: Destination_Panel

1.0 Precise and Concise Description

1. Conceptually, a destination panel is a panel containing a number of
destination buttons (typically one for each reachable destination), a number
of lamps (typically one lamp for each destination button) and, potentially,
other devices. The destination panel also contains some computer
processing capability. This computer processing capability allows the
destination panel to turn particular lamps on and off based on requests, and
to inform the outside world when a particular destination button has been

pressed.
Button with Lamp
behind it
2. At any one time, any number of lamps in the destination panel may be lit

(i.e., on). A given lamp in the destination panel becomes lit (i.e., is turned
on) based on an invocation of the Turn_On_Lamp operation. Once a lamp
becomes lit, it stays lit until the destination panel receives a request to turn
that lamp off, i.e., via an invocation of the Turn_Off_Lamp operation.
Likewise, a lamp remains off until a request is received to turn it on. Once a
particular lamp is lit (or turned off), any additional requests for the lamp to
be lit (or turned off) are ignored. No facility is provided to determine the
state of individual lamps contained in the destination panel.

3. Obviously, any request to turn a given lamp on or off must contain some
way of uniquely identifying the specific lamp, and whether that lamp is to
be turned on or off. If the lamp identified in the request is not contained in
the destination panel, the exception Lamp_Not_Found will be raised.

©Berard Software Engineering, Inc., 1989 (10/29/90) Destination Panel -—
18620 Mateney Road, Germantown, MD 20874 3: Q*QD
(301) 353-9652 1

4.0
1.

5.0
5.1

5.2

Append » agiven bounded list to the specified

bounded list

Break_Up » a given bounded list, at a specified

position, into two specified sublists
State Information
The state information for a bounded list is:
. The current number of elements contained in the bounded list
. Whether a given bounded list is empty
. Whether a given bounded list is full
. The specific elements stored in a given bounded list
J The specific order of the elements stored in a given bounded list
Note that while most state information for a given bounded list may be determined
via the invocation of a single operation, the specific order of the elements in a given

bounded list may require the invocation of many operations to be determined
accurately.

Constants and Exceptions
Constants

1. This class will provide the constant “empty list”.

Exceptions
1. This class will provide the following exceptions:

. The exception Overflow will be raised if a user tries to: insert an
element into a full list, copy a list into another list which has a
smaller upper limit of the number of elements than the former does,
append a list into another list whose number of unused spaces is less
than the current number of elements in the former list, or break up a
list into lists whose total maximum lengths are smaller than the
current length of the list to be broken up.

. The exception Underflow will be raised if a user tries to remove an
element from an empty list.

. The exception Element_Not_Found will be raised if a user specifies
a non-existent element or a non-existent element location.

©Berard Software Engineering, Inc., 1989 (10/29/90) Bounded List B"_‘Q.\QD
[]

18620 Mateney Road, Germantown, MD 20874

(301) 353-9652

6

» Test for equality + of one of the elements to be placed in
the list with another element of the same
class

» Assignment » of the value of an instance of the class
used to “count” the number of elements
in a given bounded list to another

instance of the same class

* Setto “zero” + for the class used to indicate the length
of the bounded list

* Increment “by one” » the value of an object of the class used

to indicate the length of the bounded list

* Decrement “by one” the value of an object of the class used
to indicate the length of the bounded list

3.2 Sutfered Operations

Operation Method

¢ Clear » the contents of a given bounded list,
i.e., removes all elements from the
specified bounded list

* Insert » agiven element into a given bounded
list

* Remove * agiven element from a specified
bounded list

* Length_Of » aspecified bounded list

* Copy » the contents of a given bounded list into
another specified bounded list

producing a bounded list identical in
contents to the original bounded list
"= * tests for the equality of two specified
bounded lists. Two bounded lists are
equal if the current lengths of both lists
are the same, and if the values of the
corresponding elements in both lists are

the same.
* Is_Empty * determines if a given bounded list is
empty
* Is_Full ¢ determines if a given bounded list is
full, i.e., it contains the maximum
number of elements
©Berard Software Engineering, Inc., 1989 (10/29/90) Bounded List —
18620 Mateney Road, Germantown, MD 20874 3: ?'\?3

(301) 353-9652 5

ListAin
state A(1)

ListBin
state B(1)

Append List Bto List A

List A with
List B

appended

ListBin
state B(1)

d. Break_Up: This constructor operation splits a given list at a
specified location and puts the results in two sublists. The original
bounded list will become an empty list. Depending on both the state
of the original bounded list and the location specified for breaking
the list, each of the two sublists may be in any of the states shown in

the STD.

ListAin

New List
containing
first part of
List A

ListAin

state A(1)

Break_Up List A

empty
state

New List
containing
second part
of List A

3.0 Operations
3.1 Required Operations
Operation Method
» Assignment + of the value of an element to be placed

©Berard Software Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Bounded List

in the list to another element of the same

class

333D

22111 Notes on State Transition Diagrams for Non-Spontaneous State
Changes

1. Node A represents an empty bounded list. Node B represents a bounded list
with one element. Node C represents a full bounded list. Node E represent a
bounded list containing some elements.

2. The state transition “insert maximum number of elements ” may be
accomplished by repeated application of the “insert” operation.

3. The state transition “remove all but one element ” may be accomplished by
repeated application of the “remove” operation.

4. The selector operation Length_Of may be used to determine if a bounded list
is empty, contains one element, or contains some elements.

5. The selector operation Is_Full may be used to determine if a bounded list
contains its maximum allotted number of elements.

6. The selector operation Is_Empty may be used to determine if a bounded list
contains no elements.

7. The following operations all require two or more bounded lists, and thus
cannot be accurately shown on a single STD:

a. "=": This selector operation is the test for equality of two bounded
lists. This operation compares the states of two different bounded
lists.

b. Copy: This constructor operation copies one entire bounded list to
another bounded list. Since the Copy operation produces an exact
copy of an existing bounded list, the resulting copy may be in any
one of the states shown in the STD.

ListAin
state A(1)

ListAin
state A(1)

List B in
state B(1)

Copy List Ato ListB

c. Append: This constructor operation appends one bounded list to
another bounded list. The Append operation will result in a bounded
list which may be in any one of the states shown in the STD.

16620 Maency Road. Geemasionn, MD 20874 3=\

(301) 353-9652 3

2.0 Graphical Representations
2.1 Static Representations
2.1.1 Semantic Networks

=1 Length

=1 Full
has_attribute .

Bounded_List =1 Location

has_part has_attribute

>=0 Node

can_be_a
=1 Element

2.1.2 Notes On the Semantic Networks

1. The attribute “(is the bounded list) empty” can be determined directly from
the “length (of the bounded list)” attribute. Hence, we do not show this
attribute separately.

2.2 Dynamic Representations
2.2.1 State Transition Diagrams
2.21.1 State Transition Diagrams for Non-Spontaneous State Changes

Remove all but Insert

one element

©Berard Software Engineering, Inc., 1989 (10/29/90) Bounded List -
18620 Matency Road, Germantown, MD 20874 3: Q*?D
(301) 353-9652 2

Object and Class Specification
Class: Bounded List

1.0 Precise and Concise Description

1. A linear list (or simply, list) is defined to be “a set of n >= 0 nodes X[1], ...
X[n] whose structural properties essentially involve only the linear (one-
dimensional) relative positions of the nodes: ..., if n > 0, X[1] is the first
node; when 1 < k < n, the k th node X[k] is preceded by X[k - 1] and
followed by X[k + 1]; and X[n] is the last node.” (See [Knuth, 1973].) The
number of elements (n) is called the length of the list. If n = 0, then the
list is said to be empty.

2. A bounded list is a list which has a fixed limit on the maximum number
elements that can be stored in it. A user will have to specify the maximum
length of a bounded list when a list object is declared.

3. The following is a list of operations that can be applied to a bounded list:
clear a list, insert an element into a list, remove an element from a list, find
out the current length of a list, copy a list to another list, check whether one
list is equal to another list, check whether a list is empty, check whether a
list is full, append one list to the end of another list, and break a list into two
parts.

4. The user is not concerned with the type of elements that can be put in the
list. The class of the elements to be placed in the list must be supplied by
users of this class. The following required operations for the list must be
applicable to the class of the elements to be placed in the list. The required
operations are: assignment (of the value of one element to another), and test
for equality (of the value of one element with another).

5. Users of the bounded list class must also supply a class which will be used
to “count” the number of elements in a given bounded list, and which will
also be used to identify locations within the list. The required operations for
this class are assignment (of one value of an instance of this class to
another), set to “zero” (set the value of an instance of this class to indicate
no elements in a given bounded list), increment (“by one”), and decrement
(“by one”).

6. This class will export the exceptions Underflow, Overflow, and
Element_Not_Found.

7. This class will export the constant “empty list.”
[Knuth, 1973). D.E. Knuth, The Art of Computer Programming, Volume 1:

Fundamental Algorithms, Second Edition, Addison-Wesley, Reading,
Massachusetts, 1973.

©Berard Software Engineering, Inc., 1989 (10/29/90) Bounded List —
18620 Mateney Road, Germantown, MD 20874 a: ?*?D

(301) 353-9652 1

+ Value _Of * Returns the state of the Vendor Number

component of a bid.

» Value_Of « Returns the state of the Bid Date
component of a bid.

* Value_Of * Returns the state of the FOB component
of a bid.

* Value Of * Returns the state of the Freight Cost
component of a bid.

* Value_Of * Returns the state of the Estimated Lead
Time component of a bid.

s Value Of * Returns the state of the Special
Instructions component of a bid.

e Value_Of » Returns the state of the Vendor Terms
component of a bid.

* Value Of » Returns the state of the Total Weight
component of a bid.

» Assign » Assigns the state of one Bid object to
another.

4.0 State Information

The state of an bid is the sum of the states of all its component parts. Each
component part’s state is independent of the state of any other component

part.
5.0 Constants and Exceptions
5.1 Constants
1. This class will not provide any constants,
5.2 Exceptions

1. This class will not provide any exceptions.

©Berard Software Engineering, Inc., 1989 (10/29/50) Bid =
18620 Mateney Road, Germantown, MD 20874 3: ?*?D
(301) 353-9652 6

* Assign
* Assign

3.2 Suffered Operations

Assigns the state of one Vendor Terms
object to another.

Assigns the state of one Total Weight
object to another

Method

Operation
* Set
* Set
* Set
* Set
* Set
+ Set
* Set
« Set
* Set
* Set
* Set
* Value Of
* Value_Of
e Value Of

©Berard Software Engineering, Inc., 1989 (10/29/90)
18620 Mateney Road, Germantown, MD 20874
(301) 353-9652

Bid

Sets the state of the Bid Item List
component of a bid.

Sets the state of the Buyer Location
component of a bid.

Sets the state of the RFQ Number
component of a bid.

Sets the state of the Vendor Number
component of a bid.

Sets the state of the Bid Date component
of a bid.

Sets the state of the FOB component of
a bid.

Sets the state of the Freight Cost
component of a bid.

Sets the state of the Estimated Lead
Time component of a bid.

Sets the state of the Special Instructions
component of a bid.

Sets the state of the Vendor Terms
component of a bid.

Sets the state of the Total Weight
component of a bid.

Returns the state of the Bid Item List
component of a bid.

Returns the state of the Buyer Location
component of a bid.

Returns the state of the RFQ Number
component of a bid.

3=

Set (Total Weight) to state Y

Bid with
Total Weight

instate Y

Set (Tolal Weight) to state X

2.2.1.1.1 Notes on the State Transition Diagrams for Non-Spontaneous
State Changes

1. There is a selector and a constructor operation provided for each component
part of a bid. Each constructor operation changes the statc of only one
component part.

3.0 Operations

3.1 Required Operations

Operation Method
e Assign Assigns the state of one Bid Item List
object to another.
o Assign Assigns the state of one Buyer Location
object to another.
» Assign + Assigns the state of one RFQ Number
object to another.
o Assign + Assigns the state of one Vendor
Number object to another.
o Assign « Assigns the state of one Bid Date object
to another.
o Assign « Assigns the state of one FOB object to
another.
e Assign Assigns the state of one Freight Cost
object to another.
+ Assign + Assigns the state of one Estimated Lead
Time object to another.
¢ Assign Assigns the state of one Special
Instructions object to another.
©Berard Software Engineering, Inc., 1989 (10/29/90) Bid -
18620 Mateney Road, Germantown, MD 20874 4 B: Q*?D
(301) 353-9652

&/

2.2 Dynamic Representations
2.2.1 State Transition Diagrams
2.2.1.1 State Transition Diagrams for Non-Spontaneous State Changes

Set (Bid lem List) to state Y

Set (Bid Date) to state Y

Bid with Bid
Item List in

state Y

Set (Bid ltam List) to state X
Set (Bid Date) to state X
Set (Buyer Location) 1o state Y Set (FOB) to state Y

Sat (Biuyer Location) to state X Set (FOB) to state X
Set (RFQ Number) to state Y Saet (Freight Cost) to state Y

Bid with
RFQ
Number in
state X

Bid with Bid with
Freight Cost Fraight Cost
in state X in state Y

Set (RFQ Number) to state X Set (Freight Cost) to state X
Set (Vendor Number) to state Y Set (Estimated Lead Time) to state Y

Set (Vendor Number) 1o state X Set (Estimated Lead Time) to state X

Set (Special Instructions) to siate Y Sat (Vendor Terms) to state Y

Set (Special Instructions) to state X Set (Vendor Terms) lo state X

18620 Mateney Road, Germantown, MD 20874

©Berard Software Engineering, Inc., 1989 (10/29/90) Bid -—
(301) 353-9652 ‘ 3 3= ?*?D

2.0 Graphical Representations
2.1 Static Representations
2.1.1 Semantic Networks

BID
haspant a1 Bid item List
=1 ngayt:m e Location
=1 RFQ
Number
=1 Vendor
Number
=1 g:f. lat Date
=1 FOB
e e o
=1 Estimated
Lead Time
-1 Special
Instructions
1 Vendor
= Terms
=1 ‘J:‘:"“ o, Waight

2.1.2 Notes on the Semantic Networks

1. The component parts of the bid are independent, i.¢. a change in the state of
any component will not change the state of any other component part.

©Berard Software Engineering, Inc., 1989 (10/29/90) Bid -
18620 Mateney Road, Germantown, MD 20874) a:a\?D
(301) 3539652

Object and Class Specification
Class: Bid

1.0 Precise and Concise Description

1. A bid represents a document containing all information that a vendor would
supply to a customer in response to a request for quote (RFQ). The
information supplied by the document includes the following: a list of the
items being supplied by the vendor, the location of the buyer, the RFQ
number, the vendor number, the date of the bid, FOB, the freight costs for
the bid, the estimated lead time required, any special instructions, the
vendor's payment terms, and the total weight of the order.

2. The state of a bid is the state of its component parts.

3. The required operations for a bid are: Assign (one Bid Item List to another),
Assign (one Buyer Location to another), Assign (one RFQ Number to
another), Assign (one Vendor Number to another), Assign (one Bid Date to
another), Assign (one FOB to another), Assign (one Freight Cost to
another), Assign (one Estimated Lead Time to another),Assign (one Special
Instructions to another), Assign (one Vendor Terms to another), and Assign
(one Total Weight to another),.

4. The suffered operations for a bid are:

a. Constructor operations are: Set (Bid Item List), Set (Buyer
Location), Set (RFQ Number), Set (Vendor Number), Set (Bid
Date), Set (FOB), Set (Freight Cost), Set (Estimated Lead Time),
Set (Special Instructions), Set (Vendor Terms), and Set (Total
Weight).

b. Selector operations are: Value_Of (Bid Item List), Value_Of (Buyer
Location), Value_Of (RFQ Number), Value_Of (Vendor Number),
Value_Of (Bid Date), Value_Of (FOB), Value_Of (Freight Cost),
Value_Of (Estimated Lead Time), Value_Of (Special Instructions),
Value_Of (Vendor Terms), and Value_Of (Total Weight).

c. Additional operation (for completeness) is Assign(one Bid to
another).
5. There are no exceptions associated with a bid.
6. There are no constants associated with a bid.
7. The Bid class requires that eleven classes be imported to correspond to the

following: Bid Item List, Buyer Location, RFQ Number, Vendor Number,
Bid Date, FOB, Freight Cost, Estimated Lead Time, Special Instructions,
Vendor Terms, and Total Weight. There are no restrictions placed on these
imported classes.

©Berard Software Engineering, Inc., 1989 (10/29/90) Bid -—
18620 Mateney Road, Germantown, MD 20874 3: ?\?D

(301) 353-9652 1

2. A Write_Only_Port is momentarily in a different state when it is writing
values represented as bit patterns.

5.0 Constants and Exceptions
5.1 Constants
1. This class provides no constants

5.2 Exceptions

1. This class provides an exception Address_Not_Defined which is raised if an
attempt is made to read from a port which has not been assigned to an

address, or if a port which has not been assigned an address is queried as to
its address.

18620 Mateney Road, Germantown, MD 20874

©Berard Software Engineering, Inc., 1989 (10/29/90) Write Only Port BEQ.\Q)
(301) 353-9652 4

2.2.1.1.1 Notes on State Transition Diagrams for Non-Spontaneous State

Changes

1. A given Write_Only_Port object cannot be read from, or queried about its
address until it has been assigned an address.

2. After writing a value the Write_Only_Port immediately returns to an inactive
state.

3. The Assign operation requires two instances of the the class

Write_Only_Port, and therefore cannot be shown on a state transition
diagram. The Petri Net Graph for the Assign operation is:

Write_Only_Port
A in state A(1)

Write_Only_Port
A in state A(1)

Write_Only_Port
B in state B(1)

Write_Only_Port
B in state A(1)

Assign Write_Only_Port A
to Write_Only_Port B

3.0 Operations
3.1 Required Operations

1. The Write_Only_Port class has no required operations.
3.2 Suffered Operations

Operation Method
. Set_Address ¢ Dynamically assigns an address to a
Write_Only_Port
¢ Address_Of * Returns the address of a port
* Assign » Assigns the state of one

Write_Only_Port object to another

* Write » A value of the given integer class to a
given Write_Only_Port

4.0 State Information

1. The address of a Write_Only_Port object can be changed and queried.

©Berard Software Engineering, Inc., 1989 (10/29/90) Write Only Port —
18620 Mateney Road, Germantown, MD 20874 B: ?\?)
(301) 353-9652 3

The suffered operations for the Write_Only_Port are Set_Address
(dynamically set the address for the port), Address_Of (the specified port),
Assign (one the value of one Write_Only_Port to another), and Write (a
specified bit pattern to a given Write_Only_Port).

The Write_Only_Port class will provide no constants.

The Write_Only_Port class will provide an exception:
Address_Not_Defined.

2.0 Graphical Representations

2.1

Static Representations

2.1.1 Semantic Networks

=1 =] System_Address |

has_attribute

Write-Only Port

2.1.2 Notes on the Semantic Networks

2.2

Dynamic Representations

2.2.1 State Transition Diagrams

2211 State Transition Diagrams for Non-Spontaneous State Changes
Port has no N
value which can Pon‘:;:': tng
be written
Set_Address
Port
Address is Set_Address
set
©Berard Software Engineering, Inc., 1989 (10/29/90) Write Only Port —
18620 Mateney Road, Germantown, MD 20874 3:?*?3

(301) 353-9652

=

Object and Class Specification
Class: Write_Only_Port

1.0 Precise and Concise Description

1. A “port” is an abstraction of a highly-localized interface between two pieces
of hardware in a (potentially embedded) computer system. A port is a place
where information can be transferred into, out of, or to and from, a
hardware component. -

2. A port has several distinguishing characteristics:

. an address. Every port in a system must be directly, or indirectly,
addressable within the “address space” (i.e., the set of all allowable
addresses) of the cpu (central processing unit) charged with dealing
with the port.

. a width (measured in bits). The width of a port refers to how many
bits may be simultaneously read from, or written to, the port. It is
assumed that the bits are contiguous.

. whether it is read-only, write-only, or read-write (i.e., bi-
directional). Often, ports are uni-directional, that is, they can either
be read from or written to, but not both.

3. The purpose of the port abstraction is to provide a uniform interface for
instances of other classes which use ports. Internally, ports deal with the
unique characteristics of the hardware for which they were created.
Externally, they present a constant and uniform interface for objects which
must deal with ports.

4, Ports view information only as “bit patterns.” For example, if a four-bit
wide port provides the value 10115 , it places no special significance, or

meaning, on this value. Interpretations of bit patterns are left to the clients of

the port.

5. In reality, the Write_Only_Port class is a metaclass. Users of the

Write_Only_Port class must supply:

. a width (i.e., a non-zero, positive integer value) which will be used
to set a fixed width (in bits) for all instances of the Write_Only_Port
class,

. an integer class which will be used to contain the values written by
the port, and

. a system address class, instances of which will be used to
dynamically assign a given Write_Only_Port to a specific system
address.

©Berard Software Engineering, Inc., 1989 (10/29/90) Write Only Port -_—
18620 Mateney Road, Germantown, MD 20874 3: ?*?D

(301) 353-9652 1

2. The creation of aliase§ for instances of this class does change their states,
i.e., they now have aliases. Therefore, part of the state information for an
instance of this class is whether the instance has aliases.

5.0 Constants and Exceptions
5.1 Constants
1. This class will provide no constants.
5.2 Exceptions
1. This class will provide the following exceptions:

. Mechanical_Failure: raised if the motor is not able to respond to a
request.

. Not_Stopped: raised if the motor’s rotor is rotating in a particular
direction (e.g., clockwise), and an attempt is made to cause it to
rotate in the opposite direction without first stopping the motor.

©Berard Software Engineering, Inc., 1989 (10/29/90) Shared Motor -
18620 Mateney Road, Germantown, MD 20874 3: ?\QD

(301) 353-9652

5

Motor Has
Aliases

Motor Has No
Aliases

Share

22111 Notes on State Transition Diagrams for Non-Spontaneous State
Changes

1. The operations: Is_Rotating_Clockwise, Is_Rotating_Counterclockwise,
and Is_Stopped, are selector operations which can be used to determine if a
given motor is in one of the states shown.

2. The operation Is_Shared can be used to determine if a given motor object
has aliases.
3. The operation “assign” requires two instances of this class, and, thus,

cannot easily be shown on a simple state transition diagram. The Petri Net
Graph representation of this operation is:

Shared_Motor
B in state B(1)

Assign Shared _Motor A
to Shared_Motor B

3.0 Operations
3.1 Required Operations
Operation Method
* Rotate_Clockwise » Connects the motor with the necessary
operations to rotate clockwise.
* Rotate_Counterclockwise » Connects the motor with the necessary
operations to rotate counterclockwise.
e Stop * Connects the motor with the necessary
operations to stop.
©Berard Software Engineering, Inc., 1989 (10/29/90) Shared Motor —
18620 Mateney Road, Germantown, MD 20874 3: ?*QD

(301) 353-9652 3

» Is_Rotating_Clockwise

« Is_Rotating_Counterclockwise

o Is_Stopped

3.2 Suffered Operations

Operation

Connects the motor with the necessary
operations to determine if the motor’s
rotor is rotating clockwise

Connects the motor with the necessary
operations to determine if the motor’s
rotor is rotating counterclockwise

Connects the motor with the necessary

operations to determine if the motor’s
rotor is stopped

Method

* Rotate_Clockwise

+ Rotate_Counterclockwise

» Stop

» Is_Rotating_Clockwise

Causes the motor’s rotor to rotate
clockwise

Causes the motor’s rotor to rotate
counterclockwise

Causes the motor’s rotor to stop
rotating

Returns true if the motor’s rotor is
rotating clockwise

Returns true if the motor’s rotor is
rotating counterclockwise

Returns true if the motor’s rotor is not
rotating

Assigns the state of one instance of this
class to another instance of the same
class

Allows for share semantics, i.e., allows
for the creation of aliases for instances
of the motor class.

Returns true if the given instance of the
motor class has an alias.

» Is_Rotating_Counterclockwise
o Is_Stopped
» Assign
¢ Share
e Is_Shared
4.0 State Information
1. The state information for a motor is:

©Berard Software Engineering, Inc., 1989 (10/29/90)

. The direction of rotation, which typically assumes values of:

clockwise, counterclockwise, and stopped.

Shared Motor

18620 Mateney Road, Germantown, MD 20874

(301) 353-9652

4

333D

8. There are no constants associated with the instances of the Shared_Motor
chass.

2.0 Graphical Representations
2.1 Static Representations
2.1.1 Semantic Networks

- =1 *1 Direction_of_Rotation

—’| : I—"I Shared Is_a Boolean

has_attribute
Shared_tMotor

2.1.2 Notes on the Semantic Networks

1. Direction of rotation can only assume one of three values: rotating
clockwise, rotating counterclockwise, and stopped.

2. While we can determine whether or not a given instance of this class has
aliases, we cannot determine how many aliases it has.

2.2 Dynamic Representations
2.2.1 State Transition Diagrams
2211 State Transition Diagrams for Non-Spontaneous State Changes

Rotate_Clockwise

Stop Rotate_Counterclockwise

Motor's Rotor
Is Rotating

Motor’s Rotor Is
Rotating
Counterclockwise

Motor's Rotor
Is Stopped

Rotate_Clockwise

Stop

Stop Rotate_Counterclockwise

A DG St 327D

(301) 353-9652 2

Object and Class Specification
Class: Shared Motor

1.0 Precise and Concise Description

1. A motor is an abstraction of a physical motor device that converts energy
into movement. Movement is delivered in the form of the rotation of the
motor’s rotor. A rotor may be viewed as a shaft which is part of a motor,
and to which varying devices may be attached.

Rotor

2. “Share semantics” allow for the creation of aliases for an object. This has
the advantage of possible increases in time and space efficiency. However,
it increases the possibility of actions with unintended results, e.g.,
unintentional deletion or alteration of an object through operations
performed using the alias. (Instances of this class may have more than one
alias.)

3. The suffered operations for a motor include movement operations
(rotate_clockwise, rotate_counterclockwise, stop), operations for detecting
movement (is_rotating_clockwise, is_rotating_counterclockwise,
is_stopped), assign (the state of one instance of this class to another
instance of the same class) and operations for share semantics (share and
is_shared).

4. If a motor object is in the “stop” state then either the rotate_clockwise or
rotate_counterclockwise operations may be accomplished. If the motor’s
rotor is rotating clockwise or counterclockwise, and rotation in the opposite
direction is desired, the motor must first be stopped. If a motor is in a
particular state, and an operation is invoked which would result in the motor
maintaining that state, no state changes will occur, i.e., the operation will be
ignored.

5. This motor abstraction represents a motor which produces movement of
constant speed, i.¢., it is incapable of varying speeds of rotation.

6. The motor contains state information about the current direction of rotation,
or, more precisely, about the direction of rotation of the motor’s rotor. The
allowed states for direction of rotation are: clockwise, counterclockwise,
and stopped. An additional piece of state information is whether a given
motor object has aliases, i.e., is shared.

7. The exceptions for a shared motor object are Mechanical_Failure and
Not_Stopped.
©Berard Software Engineering, Inc., 1989 (10/29/90) Shared Motor : -
18620 Mateney Road, Germantown, MD 20874 3:?\?3

(301) 353-9652 . 1

3.0 Operations
3.1 Required Operations
Operation Method

» Signal * The action(s) clients of the
Read_Only_Port want the port to take
when information arrives at the port.
This usually involves the actual
transference of the information.

3.2 Suffered Operations

Operation Method
* Set_Address * Dynamically assigns an address to a
Read_Only_Port
e Address_Of » Returns the address of a port
* Assign » Assigns the state of one

Read_Only_Port object to another
4.0 State Information
1. The address of a Read_Only_Port object can be changed and queried.

2. A Read_Only_Port is an object with life. Specifically, it periodically and
“spontaneously” produces values represented as bit patterns.

5.0 Constants and Exceptions
5.1 Constants
1. This class provides no constants
5.2 Exceptions
1. This class provides an exception Address_Not_Defined which is raised if an
attempt is made to read from a port which has not been assigned to an

address, or if a port which has not been assigned an address is queried as to
its address.

©Berard Software Engineering, Inc., 1989 (10/29/90) Read Only Port —
18620 Mateney Road, Germantown, MD 20874 3: ? *?)

(301) 353-9652 4

2.2.1.1.1 Notes on State Transition Diagrams for Non-Spontaneous State
Changes

1. A given Read_Only_Port object cannot be read from, or queried about its
address until it has been assigned an address.

2. The Assign operation requires two instances of the the class
Read_Only_Port, and therefore cannot be shown on a state transition
diagram. The Petri Net Graph for the Assign operation is:

Read_Only_Port
A in state A(1)

Read_Only_Port
A in state A(1)

Read_Only_Port
B in state A(1)

Read_Only_Port
B in state B(1)

Assign Read_Only_Port A
to Read_Only_Port B

2.2.1.2 State Transition Diagrams for Spontaneous State Changes

Value Arrives

Port has
value which
can be read

Port has no
value which
can be read

2.2.1.2.1 Notes on State Transition Diagrams for Spontaneous State
Changes

1. When information arrives at the hardware port that information will be
transferred to software clients of the port via a Signal operation. Thus,
clients of a port will not have to poll the port.

SEot v e S 3ERD

(301) 353-9652 3

Object and Class Specification
Class: Read_Only Port

1.0 Precise and Concise Description

1. A “port” is an abstraction of a highly-localized interface between two pieces
of hardware in a (potentially embedded) computer system. A port is a place
where information can be transferred into, out of, or to and from, a
hardware component.

2. A port has several distinguishing characteristics:

. an address. Every port in a system must be directly, or indirectly,
addressable within the “address space” (i.e., the set of all allowable
addresses) of the cpu (central processing unit) charged with dealing
with the port.

. a width (measured in bits). The width of a port refers to how many
bits may be simultaneously read from, or written to, the port. It is
assumed that the bits are contiguous.

. whether it is read-only, write-only, or read-write (i.e., bi-
directional). Often, ports are uni-directional, that is, they can either
be read from or written to, but not both.

3. The purpose of the port abstraction is to provide a uniform interface for
instances of other classes which use ports. Internally, ports deal with the
unique characteristics of the hardware for which they were created.
Externally, they present a constant and uniform interface for objects which
must deal with ports.

4, A Read_Only_Port is an “object with life,” i.e., there is no software
mechanism for changing some aspects of the state of the port. Clients of the
Read_Only_Port, for example, cannot force the Read_Only_Port to provide
them with information at any given time. They must wait for the port to
provide them with information. Ports do not buffer information, i.e., if the
information is not read when it becomes available, the information is lost.

5. Ports view information only as “bit patterns.” For example, if a four-bit
wide port provides the value 10117 , it places no special significance, or
meaning, on this value. Interpretations of bit patterns are left to the clients of
the port.

6. The Read_Only_Port has one required operation (“Signal”’) which contains
the actions the client wishes to accomplish when information arrives at the
hardware port — usually includes the transference of that information.

7. The suffered operations for the Read_Only_Port are Set_Address
(dynamically set the address for the port), Address_Of (the specified port),
and Assign (one the value of one Read_Only_Port to another).

©Berard Software Engineering, Inc., 1989 (10/29/90) Read Only Port —
18620 Mateney Road, Germantown, MD 20874 =?*?)

(301) 353-9652 1

8. In reality, the Read_Only_Port class is a metaclass. Users of the
Read_Only_Port class must supply:

. a width (i.e., a non-zero, positive integer value) which will be used
to set a fixed width (in bits) for all instances of the Read_Only_Port
class,

. an integer class which will be used to contain the values read by the
port, and

. a system address class, instances of which will be used to
dynamically assign a given Read_Only_Port to a specific system
address.

9. The Read_Only_Port class will provide no constants.

10. The Read_Only_Port class will provide an exception:
Address_Not_Defined.

2.0 Graphical Representations
2.1 Static Representations
2.1.1 Semantic Networks

=1 ={ System_Address |

has_attribute

Read-Only Port

2.1.2 Notes on the Semantic Networks

2.2 Dynamic Representations

2.2.1 State Transition Diagrams

2211 State Transition Diagrams for Non-Spontaneous State Changes

Set_Address

Port
Address is
not set

Port
Address is
set

Set_Address

©Berard Software Engineering, Inc., 1989 (10/29/90) Read Only Port -
18620 Mateney Road, Germantown, MD 20874 a: Q*?D

(301) 353-9652 2

Object and Class Specification
Class: Button

1.0 Precise and Concise Description

1. A “real world” button is made of some hard material (usually plastic and
metal) and is used to signal the occurrence of some external event (usually
by closing a circuit). In most cases, a button is a two state device (e.g.,
“pressed” and “not pressed”) although it is possible for a button to have
more than two states.

—
® O

2. A button is an “object with life” which is used by an outside source to
request service from the system.

3. The required operations for the button are Signal and Press. Press is the
operation which connects an instance of this class with the “outside world”
(e.g., with a port) so that it knows that a “real world” button has been
pressed. Signal is an operation which allows the button to alert a designated
object, or system of objects, that it has been “pressed.”

4, Buttons have no suffered operations. [However, hardware (“real world”)
buttons suffer the operations of being pressed and released.]

5. The states that the button may be in are “pressed” and “not pressed.”
Neither of these two states is very persistent.

6. There are no constants or exceptions associated with the button.
2.0 Graphical Representations
2.1 Static Representations
2.1.1 Semantic Networks

Button

2.1.2 Notes on the Semantic Networks

1. To the outside world, a button is a simple object.
©Berard Software Engineering, Inc., 1989 (10/29/90) Button —
18620 Mateney Road, Germantown, MD 20874 3: ?\?3

(301) 353-9652 1

2.2 Dynamic Representations

2.2.1 State Transition Diagrams

22141 State Transition Diagrams for Non-Spontaneous State Changes
l. Not Applicable.

2.21.11 Notes on State Transition Diagrams for Non-Spontaneous State
Changes

1. There are no non-spontaneous state changes for this class.

22.1.2 State Transition Diagrams for Spontaneous State Changes

2.2.1.2.1 Notes on State Transition Diagrams for Spontaneous State
Changes

Press

Release

1. The “button abstraction” knows when the “real world” button has been
pressed via a required operation, i.e., “Press.”

2. - When the “button abstraction” is made aware that the “‘real world” button
has been pressed, it invokes the *“Signal” operation.

3.0 Operations
3.1 Required Operations

Operation Method
» Signal » Alerts the button’s client that the button
has been pressed and returns the
buttons identification.
e Press » Alerts the button that it has been
G‘pmsm”

3.2 Suffered Operations

1. Buttons have no suffered operations. [However, hardware (“real world”™)
buttons suffer the operations of being pressed and released.]

18620 Mooy Roud, Gemaniown, MD 20874 3=2\%D

(301) 3539652 2

‘4.0 State Information

1. The states that the button may be in are pressed and not pressed.
5.0 Constants and Exceptions

5.1 Constants

1. This class will neither provide or require any constants.

5.2 Exceptions

1. This class will neither provide or require any exceptions.
©Berard Software Engineering, Inc., 1989 (10/29/90) Button
18620 Mateney Road, Germantown, MD 20874 3: ?*?)

(301) 353-9652 3

2.2 Dynamic Representations
2.2.1 State Transition Diagrams

2.2.1.1 State Transition Diagrams for Non-Spontaneous State Changes
Turn on
Tum on @ ® Turn off
Turn off

2.2.1.1.1 Notes on State Transition Diagrams for Non-Spontaneous State
Changes

1. Note that the operation Turn_On has no effect if the lamp is already on and
Turn_Off has no effect if a lamp is already off.

2. The Is_On selector operation can be used to determine the state of a given
instance of this class.
3.0 Operations
3.1 Required Operations
Operation ' Method
¢ Tum_On « Connects the lamp abstraction with the

means of turning the physical lamp on.

o Tum_Off « Connects the lamp abstraction with the
means of turning the physical lamp off.

3.2 Su_ffered Operations

Operation Method

+ Tum_On * Turn the lamp on.

e Tumn_Off * Tum the lamp off.

e Assign « Assign the state of one instance of this
class to another instance of the same
class

¢ Is_On » Returns true if a given instance of this

class is in the “on” state.

©Berard Software Engineering, Inc., 1989 (10/29/90) Lamp -
18620 Mateney Road, Germantown, MD 20874 3: ?\?D
(301) 3539652 2

4.0 State Information

1. The states that the lamp may be in are “on” and “off.”
5.0 Constants and Exceptions
5.1 Constants

1. This class will provide no constants.

5.2 Exceptions

1. This class will provide no exceptions.
©Berard Software Engineering, Inc., 1989 (10/29/90) Lamp —
18620 Mateney Road, Germantown, MD 20874 3: ?\?)
(301) 353-9652 3

Ef’blf:‘/ WAERVIAS e D Sy

